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A ‘local’ radial basic function (RBF) based gridfree scheme has been developed to solve
unsteady, incompressible Navier–Stokes equations in primitive variables. The velocity–
pressure decoupling is obtained by making use of a fractional step algorithm. The scheme
is validated over a variety of benchmark problems and found a very good agreement with
the existing results. Comparisons with the benchmark solutions show that the developed
local RBF gridfree scheme is stable and produces accurate results on domains discretized
even with non-uniform distribution of nodal points.
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1. Introduction

In order to reduce the high cost of grid generation, numerous schemes have been proposed in the last two decades. Grid-
free schemes are one such class of methods in which the solution is approximated on a set of nodes with no specified con-
nectivity. Smoothed particle hydrodynamics, element free Galerkin method, reproducing kernel particle method, the
partition of unity method, the hp-clouds method, finite point method, mesh less Petrov–Galerkin method and general finite
difference method are the well known gridfree methods considered for fluid flow problems.

Another group of gridfree methods for partial differential equations (PDEs), based on radial basis functions (RBFs), are cur-
rently undergoing tremendous research. Over the last few decades RBFs have been very successfully investigated for recon-
structing functions from multivariate scattered data. This success led Kansa [1] to initiate the use of RBF interpolation in the
global collocation methods for solving partial differential equations. Following this, Fasshauer [2] proposed another colloca-
tion method based on Wu’s [3] Hermite-RBF interpolation. The resulting collocation matrix obtained in Fasshauer’s approach
is symmetric and non-singular, while the matrix obtained in Kansa’s approach is non-symmetric and also the non-singularity
is not guaranteed, as shown by Hon and Schaback [4] (even though such situations are rare in practical problems). Using
asymmetric collocation method, heat transfer and fluid dynamics problems have been studied by Chantasiriwan [6] and
Šarler [5]. A third collocation approach has been proposed by Mai-Duy and Tran-Cong [7] and Mai-Duy et al. [8] for which
. All rights reserved.
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the basis functions are taken to be anti-derivatives of the usual radial basis functions with the expectation that the resulting
system is more stable due to the involvement of integrals rather than derivatives. Other significant contributions made in
this direction are the works of Chen and Hon [9], Chen and Tanaka [10] and Chen et al. [11].

In all the investigations mentioned above, it is necessary to invert a highly ill-conditioned dense matrix due to the glob-
ally supported RBFs. Moreover, the amount of computation increases when these methods are applied for nonlinear or time-
dependent problems. To circumvent these difficulties some alternatives have been proposed in the literature, namely, do-
main decomposition, preconditioning and the use of compactly supported RBFs. Recently, an RBF based ‘local’ method has
been proposed by Wright and Fornberg [12]. In their method, derivatives are approximated in the same manner as in the
case of traditional FD schemes. In essence, discretization of the derivatives at any particular node is obtained by RBF inter-
polation using a small set of nodes in the neighborhood, which forms a stencil as in FD. Wright and Fornberg tested their
schemes by applying them to Poisson type of equations. Some more efforts to bring localization in RBF-based methods have
been independently made by Lee et al. [13], Tolstykh and Shirobokov [14], Šarler and Vertnik [15] and Vertnik and Šarler
[16]. The methods in [13,14], though used different procedure, has a similar form of [12]. A direct localization of the global
collocation method has been considered in [15,16].

In the present work, the development of a gridfree scheme, based on the localizing concept proposed by Wright and Forn-
berg [12], to solve unsteady incompressible viscous flows and its application to some simple and complex benchmark flow
problems has been presented. The governing equations of the fluid flow are taken in primitive variables due to their general
nature. This form of Navier–Stokes equations requires a special procedure to compute the pressure from the continuity equa-
tion. SIMPLE-type of algorithms have originally been developed for steady incompressible Navier–Stokes equations, espe-
cially on staggered grid arrangement. However, such pressure correction algorithms are computationally very expensive
for transient problems due to a nested three loop iterative procedure (an additional time iteration over two usual nested
iterative processes of the steady SIMPLE procedure). Therefore, nearly all numerical methods for solving unsteady incom-
pressible flow equations in terms of the primitive variables [17–19] use a fractional step approach. The basic idea behind
these algorithms is to get some approximation for the velocity components from the momentum equations and then solving
an elliptic equation to enforce the divergence free constraint, which in turn determines the pressure. The proposed algorithm
also follows a similar procedure but, uses local gridfree RBF scheme to discretize its spatial derivatives.

The organization of the paper is as follows: the local interpolation problem using radial basis functions and the develop-
ment of a local gridfree scheme to solve general boundary value problems is presented in Section 2. The development of the
scheme to solve incompressible Navier–Stokes equations is given in Section 3. In Section 4, the developed scheme has been
validated using variety of benchmark problems and compared the obtained results with the existing ones.

2. Development of the local RBF scheme

2.1. Interpolation using radial basis functions

Radial basis functions are initially known as a powerful tool for approximating multivariate functions on a scattered data.
These functions can be broadly classified into infinitely smooth and piecewise smooth radial functions. The former includes a
shape parameter e, by varying which the radial function can be varied from sharp peaked one to a very flat one. Classical
choices of RBFs are given in Table 1 along with their order m. The order of a radial basis function represents the minimum
degree of the polynomial to be appended to the interpolant to ensure the non-singularity of the interpolation matrix.

Multiquadric (MQ), an infinitely smooth RBF, is one among the most popular radial functions. Hardy [20] was the first to
derive the two-dimensional MQ scheme to approximate geographical surfaces. Franke, in his survey [21] on methods for
function approximation had shown numerically that MQ outperformed all other tested functions, including other RBFs like
thin plate splines and Gaussian. Therefore, all computations in the present work have been carried out with multiquadric
(with m ¼ 1

2 and hence m = 1, from Table 1) as the radial function.
In RBF interpolation, a function is approximated as a linear combination of translates of a particular radial function /(k�k),

which is radially symmetric about its center. In other words, for a given set of distinct nodes �xi 2 Rd and corresponding func-
tion values uð�xiÞ; i ¼ 1;2; . . . ;n, the RBF interpolant, sð�xÞ, is of the form
Table 1
Exampl

Name o

Multiqu

Inverse

Gaussia

Polyhar
uð�xÞ � sð�xÞ ¼
Xn

j¼1

kj/ðk�x� �xjkÞ þ
Xl

j¼1

cjpjð�xÞ; ð1Þ
es of certain radial functions

f the RBFs /(r), r > 0 Order of the RBF

adric (MQ) ð1þ ðerÞ2Þm; m > 0; m 62 N m = dme
multiquadric (IMQ) (1 + (er)2)m, m < 0 m = 0

n (GA) e�ðerÞ
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m = 0

monic splines rm; m > 0; if m 2 2N� 1
rm logðrÞ; if m 2 2N
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where k�k is the Euclidean norm and fpjð�xÞg
l
j¼1 is a basis for pd

m (space of all d-variate polynomials with degree <m, where m is
the order of / and for multiquadric it is one). To take care of the extra degrees of freedom in (1), l extra conditions are nec-
essary along with the interpolation conditions,
sð�xiÞ ¼ uð�xiÞ; i ¼ 1; . . . ; n: ð2Þ

The extra l conditions are chosen by taking the coefficient vector k 2 Rn orthogonal to pd

mjX (the polynomial space restricted
to X ¼ f�x1; �x2; . . . ; �xng), i.e,
Xn

j¼1

kjqð�xjÞ ¼ 0; ð3Þ
where q 2 pd
m.

Imposing the interpolation condition (2) and the condition (3) on sð�xÞ, gives a linear system,
U p

pT 0

� �
k

c

� �
¼

u
0

� �
; ð4Þ
where Ui;j ¼ /ðk�xi � �xjkÞ; i; j ¼ 1; . . . ;n and pi;j ¼ pjð�xiÞ; j ¼ 1; . . . ; l and i ¼ 1; . . . ;n. The coefficient matrix in (4) is denoted
as A for future reference.

2.2. Lagrange representation of RBF interpolation

To derive the RBF based ‘local’ scheme, Lagrange representation of the RBF interpolant is being considered, i.e, the inter-
polant is represented in the form,
sð�xÞ ¼
Xn

j¼1

wjð�xÞuð�xjÞ; ð5Þ
where wjð�xÞ’s satisfy the cardinal conditions,
wjð�xkÞ ¼ djk; j; k ¼ 1;2; . . . ; n: ð6Þ
The closed form representation for wjð�xÞ, in terms of /ðk�x� �xjkÞ’s, can be obtained by posing another set of RBF interpolation
problems for which the data is obtained from the cardinal conditions on wj, i.e, for each wj the corresponding right hand side
vector is ej, the standard unit vector with jth component is 1 and rest are zeroes. Then, for each j, there will be a linear system
which can be expressed in the form,
/11 . . . /1n p11

. . . . . . . . . . . .

/j1 . . . /jn p1j

. . . . . . . . . . . .

/n1 . . . /nn p1n

p11 . . . p1n 0

0
BBBBBBBB@

1
CCCCCCCCA

kj1

. . .

kjj

. . .

kjn

cj1

0
BBBBBBBB@

1
CCCCCCCCA
¼

wjð�x1Þ ¼ 0
. . .

wjð�xjÞ ¼ 1
. . .

wjð�xnÞ ¼ 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; ð7Þ
where /ij ¼ /ðk�xi � �xjkÞ; i; j ¼ 1; . . . ; n and p1j ¼ p1ð�xjÞ; j ¼ 1; . . . ; n. By Cramer’s rule, for each kjk, k = 1, . . ., n can be written as,
kjk ¼

det

/11 . . . 0 . . . /1n p11 . . . pm1

. . . . . . . . . . . . . . . . . . . . . . . .

/j1 . . . 1 . . . /jn p1j . . . pmj

. . . . . . . . . . . . . . . . . . . . . . . .

/n1 . . . 0 . . . /nn p1n . . . pmn

p11 . . . 0 . . . p1n 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

pm1 . . . 0 . . . pmn 0 . . . 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

det

/11 . . . /1k . . . /1n p11 . . . pm1

. . . . . . . . . . . . . . . . . . . . . . . .

/j1 . . . /jk . . . /jn p1j . . . pmj

. . . . . . . . . . . . . . . . . . . . . . . .

/n1 . . . /nk . . . /nn p1n . . . pmn

p11 . . . p1k . . . p1n 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

pm1 . . . pmk . . . pmn 0 . . . 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

; ð8Þ
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cj1 also can be written in a similar fashion. Then, using kjk’s and cj1, each wj can be written in terms of / as
wjð�xÞ �
Xn

k¼1

kjk/ðk�x� �xkkÞ þ cj1p1ð�xÞ; j ¼ 1;2; . . . ; n ð9Þ
and then making use of some simple properties of determinants on Eq. (9) along with the symmetry of RBF interpolation
matrix yields,
wjð�xÞ ¼
detðAjð�xÞÞ

detðAÞ ; j ¼ 1;2; . . . ;n; ð10Þ
where Ajð�xÞ is same as the matrix A, except that jth row is now replaced by the vector,

Bð�xÞ ¼ ½/ðk�x� �x1kÞ/ðk�x� �x2kÞ . . . /ðk�x� �xnkÞ j p1ð�xÞ�; ð11Þ
where p1ð�xÞ 2 Pd
1.

2.3. RBF approximation of operators

The formulae derived in (5)–(11) can be used to approximate derivatives of a function or in general, value of Lu at a certain
point, say �xi, where L is a linear differential operator. To approximate Luð�xiÞ, consider a set Si, consisting of ni neighboring
nodes of �xi, given by Si ¼ f�x1; . . . ; �xni

g. Let Luð�xiÞ be represented as a linear combination of u at the points of Si, given by
Luð�xiÞ �
Xni

j¼1

cjuð�xjÞ: ð12Þ
Then, the computation of the weights cj gives the required approximation to Luð�xiÞ. Applying the operator L to the Lagrange
representation of RBF interpolant in (5) gives,
Luð�xiÞ �Lsð�xiÞ ¼
Xni

j¼1

Lwjð�xiÞuð�xjÞ: ð13Þ
From Eqs. (12) and (13), cj’s can be obtained as,
cj ¼Lwjð�xiÞ; j ¼ 1; . . . ; ni: ð14Þ
For example, with ni = 3 and m = 1, weights can have the expression of the form,
c1 ¼

L/ðk�x� �x1kÞ L/ðk�x� �x2kÞ L/ðk�x� �x3kÞ Lð1Þ
/21 /22 /23 1
/31 /32 /33 1
1 1 1 0

���������

���������
/11 /12 /13 1
/21 /22 /23 1
/31 /32 /33 1
1 1 1 0

���������

���������

and so on, where the numerator is L½j A1ð�xÞ j� and the denominator is jAj as mentioned in (10) for c1.

Now, by making use of the symmetry of the interpolation matrix and applying Cramer’s rule to (14), cj’s can be obtained
by solving the linear system,
N p
pT 0

� �
�c
�l

� �
¼ LBð�xiÞð Þ; ð15Þ
where Bð�xÞ is the vector given in (11), �l, a dummy vector corresponding to the vector �c in (1) and N and p are as given in (4).
It is clear from the development of the final linear system (15) that though it is dense, the size of (15) is only ni, which is

very much smaller than the size (n) of the global RBF collocation system. This makes the system more stable for a wide range
of e. Moreover, only right hand side of (15) depends on the operator L, for which the weights are to be computed. This prop-
erty helps when weights are to be computed for many operators with same distribution of nodes, as in the case of nonlinear
equations.

2.4. Algorithm

Consider a linear boundary value problem,
Luð�xÞ ¼ f ð�xÞ; if �x 2 X;

Buð�xÞ ¼ a1uð�xÞ þ a2
ouð�xÞ
on ¼ gð�xÞ; if �x 2 oX:

)
ð16Þ



8926 Y.V.S.S. Sanyasiraju, G. Chandhini / Journal of Computational Physics 227 (2008) 8922–8948
Let us assume that the domain is discretized with n = nI + nB (nI interior and nB boundary) nodes. For each node �xi; i ¼ 1; . . . ;n,
assume that ni nodes are used in the support domain, then the local RBF gridfree algorithm can be implemented using the
following algorithm

(1) Obtain the weights ci for each node �xi; i ¼ 1; . . . ;n by solving Eq. (15), with right hand side as LðBð�xÞÞ�xi
; if �xi 2 X or

BðBð�xÞÞ�xi
; if �xi 2 oX, where Bð�xÞ is the vector given in (11).

(2) Assemble the weights at the proper locations, depending on the nodes of the set Si, in the ith row of the global matrix L.
(3) Solve the global system using any iterative method (for most of the iterative solvers explicit generation of global

matrix L may not be needed).

3. Local RBF based gridfree scheme to transient incompressible Navier–Stokes equations

The transient incompressible Navier–Stokes equations, in non-dimensional form, are
Continuity equation : r � V ¼ 0; ð17Þ

Momentum equations :
oV
ot
þ ðV � rÞV ¼ �rP þ 1

Re
r2V ; ð18Þ
where V ¼ ðue1 ; . . . ;ued
Þ is the velocity field, r ¼ ej

o
oxej

is the gradient operator, r2 ¼ o2

oxej
oxej

is the Laplacian operator,

j = 1, 2, . . ., d, d is the dimension of the problem, P is the pressure and Re is the dimensionless parameter called Reynolds
number defined by Re ¼ Ul

m , U is the characteristic velocity, l is the characteristic length and m is the kinematic viscosity.
The necessary initial and boundary conditions depend on the chosen problem and will be discussed later.

The procedure, described in this section, is based on the explicit Euler time discretization. The development of the scheme
based on other temporal schemes also can be generated, however, for simplicity Euler scheme has been chosen in the
presentation.

Discretization of the momentum equation (18) by Euler method gives
V ðnþ1Þ � V ðnÞ

Dt
¼ �ðV ðnÞ � rÞV ðnÞ � rPðnÞ þ 1

Re
r2V ðnÞ ð19Þ
(or)
V ðnþ1Þ ¼ V ðnÞ þ Dt �ðV ðnÞ � rÞV ðnÞ � rPðnÞ þ 1
Re
r2V ðnÞ

� �
: ð20Þ
Rewriting (20) in the form
V ðnþ1Þ ¼ V� þ Dtð�rPðnÞÞ; ð21Þ
where V�, computed from (20), can be given as
V� ¼ V ðnÞ þ Dt �ðV ðnÞ � rÞV ðnÞ þ 1
Re
r2V ðnÞ

� �
: ð22Þ
At each time step, the solution is expected to satisfy continuity equation. Hence V ðnþ1Þ must satisfy the continuity equation
(17), which implies
r � V ðnþ1Þ ¼ 0 ðorÞ r � ðV� � DtrPðnÞÞ ¼ 0: ð23Þ
Eq. (23) can be simplified to
r2PðnÞ ¼ 1
Dt
r � V�: ð24Þ
Eq. (24) is a Poisson’s equation with non-zero source term 1
Dtr � V� (V� may not satisfy continuity equation). Numerical

implementation of the procedure described from (19) to (24) can be summarized as follows.

3.1. Numerical algorithm

At every time step,

(1) Compute intermediate velocity field V� ¼ ðu�e1
; . . . ;u�ed

Þ using
V� ¼ V ðnÞ þ Dt �ðV ðnÞ � rÞV ðnÞ þ 1
Re
r2V ðnÞ

� �
: ð25Þ
(2) Solve the pressure Poisson’s equation,
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r2PðnÞ ¼ 1
Dt
r � V�; BC :

op
on̂

ðnÞ
¼ 1

Dt
ðV� � V ðnÞÞ: ð26Þ
(3) Update the velocity field to (n + 1)th time level using
V ðnþ1Þ ¼ V� þ Dtð�rPðnÞÞ: ð27Þ
The above algorithm can be implemented using radial basis functions as follows. Since V ðnÞ is known, the right hand side
of (25) can be taken as LV ðnÞ, where L ¼ �ðV ðnÞ � rÞ þ 1

Rer
2. Then compute the weights using (15) with right hand side as

LBð�xiÞ, which is evaluated using (11). Finally, LV ðnÞ is obtained using (12). To compute each component of V , the above pro-
cedure is repeated for d number of times, where d is the dimension of the problem.

The pressure Poisson equation (Neumann problem) in Step (2) is solved using the Algorithm 2.4. The linear system, in the
third step of the Algorithm 2.4, is solved using either SOR or Bi-CGSTAB without explicitly storing the matrix L.

The gradient of the pressure in Step 3 is computed in a similar manner as the operator L in Step 1, except that the oper-
ator is now the gradient operator r.

4. Validation of the scheme

In this section, the developed RBF scheme, described in the previous section, is validated by solving some fluid flow prob-
lems. Popular laminar flow problems like Couette and Poiseuille flows and complex flow problems like lid driven cavity and
backward-facing step problems are considered for validation. Finally, the validated code is used to solve the stenosis prob-
lem, that is, the blood flow through arteries with a local constriction.

For all the chosen test problems, steady state solutions have been obtained through unsteady computations. The steady
state is assumed to be achieved whenever the relative error satisfies,
max
ðûðnþ1Þ � ûðnÞÞ

ûðnÞ

����
���� < tolst; ð28Þ
where ûðnÞ and ûðnþ1Þ are the computed solutions at nth and (n + 1)th time levels, respectively. tolst is the steady state error
tolerance and its value has been fixed as 10�06.

The laminar viscous flow problems like Couette and Poiseuille flows are some simple problems in incompressible viscous
flows. The square or rectangular geometry and the availability of analytical solutions make these problems useful in the val-
idation of any numerical scheme. Therefore, these problems have been chosen for testing the developed ‘local’ RBF scheme.
The obtained results have been compared with the corresponding analytical solutions. Due to the existence of analytical
solutions for these two problems, the developed RBF scheme has been tested on them by varying the value of the multiqua-
dric shape parameter e and support domains to study their effect on the accuracy.

4.1. Couette flow

Couette flow is a laminar flow of a viscous fluid in the space between two surfaces, one of which is moving relative to the
other. It is perhaps the simplest of all viscous flows, while at the same time retaining many of the physical characteristics of a
complicated boundary layer flow and also represents the exact analytical solution of the Navier–Stokes equations.

Couette flow can be defined by considering a viscous flow between two parallel plates separated by a unit vertical dis-
tance, as given in the Fig. 1. The upper plate is moving with a constant velocity one (non-dimensionalized) and the lower
plate is stationary. The flow is driven by virtue of viscous drag force acting on the fluid, as shown in Fig. 1. The analytical
solution of the described Couette flow is
uðy; tÞ ¼ yþ 2
p
X1
k¼1

ð�1Þk

k
sinðkpyÞe�k2p2

Re t ð29Þ
from which the initial and boundary conditions are taken.
moving with velocity u= 1

L = 1

u = 0x

y

Fig. 1. Schematic of Couette flow.
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Fig. 2. Discretization of the domain for Couette flow with (a) 5-node, (b) 9-node support domains: (i) internal, (ii) boundary and (iii) corner nodes.
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To solve Couette flow using the developed RBF scheme, the computational domain (Fig. 2) has been fixed as [0,2] � [0,1]
for (x, y) and the steady state solutions have been obtained using different uniform nodal distributions with nodal spacing
varied from 0.2 to 0.025. Since the laminar flow is valid only for very low Reynolds’ numbers, present computations have
been carried out with Re = 1. The time step Dt has been varied from 0.001 to 0.00001 to obtain stable solutions using Euler
method. The time step has been made deliberately low so that the time discretization errors do not dominate the errors of
space discretization which has been realised using RBFs.

Fig. 2 gives the discretization of the domain and the choice of two different support domains used in the simulations. Both
5-node and 9-node supports have been considered and the supports for boundary and corner nodes have been taken
accordingly.

Both initial and boundary conditions for velocities have been taken from the available analytical solution. For pressure,
boundary conditions are constructed from (21). SOR iterative solver with the pressure at (n)th time level as the initial
approximation has been used to solve the pressure Poisson equation. The pressure iterative process is also been carried
out with Bi-CGSTAB, however, not much reduction in the CPU time is observed.

Velocity profiles at various time levels have been compared with the corresponding analytical solutions and presented in
Fig. 3. Table 2 reports the errors with respect to infinity norm (err1). The fourth to tenth decimal place accuracy in these
results demonstrates the robustness of the local RBF scheme. These solutions are obtained with e = 1.
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

u 
(y

)

t = 1

t = 0.101
t = 0.041

t = 0.011

Fig. 3. Comparison of the velocity profiles at various time levels for Couette flow.



Table 2
Error (err1) at different time levels for Couette flow

n 11 � 6 21 � 11 41 � 21 81 � 41

t;Dt? 0.001 0.0001 0.00005 0.00001

0.011 3.92(�02) 1.12(�02) 3.16(�03) 8.93(�04)
0.101 8.73(�04) 2.24(�04) 5.69(�05) 1.44(�05)
1.0 5.95(�08) 1.46(�08) 1.77(�09) 8.18(�10)

Table 3
Error err1 at t = 0.6 for various values of e on 41 � 21 nodes using 5-node and 9-node supports

e 5-node support 9-node support

0.005 Diverged Diverged
0.01 3.147(�07) Diverged
0.05 1.670(�07) Diverged
0.1 1.659(�07) Diverged
0.2 1.581(�07) Diverged
0.3 1.450(�07) 1.573(�07)
0.5 1.031(�07) 1.283(�07)
1 9.187(�08) 3.808(�09)
2 8.521(�07) 4.762(�07)
5 5.433(�06) 3.190(�06)
10 1.568(�05) Diverged
15 Diverged Diverged

Table 4
Error err1 at t = 1 for various values of e on 41 � 21 nodes using 5-node and 9-node supports

e 5-node support 9-node support

0.005 Diverged Diverged
0.01 6.073(�09) Diverged
0.05 3.222(�09) Diverged
0.1 3.202(�09) Diverged
0.2 3.050(�09) Diverged
0.3 2.797(�09) 3.035(�09)
0.5 1.989(�09) 2.475(�09)
1 1.772(�09) 7.349(�11)
2 1.644(�08) 9.188(�09)
5 1.048(�07) 6.154(�08)
10 3.026(�07) Diverged
15 Diverged Diverged
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To see the effect of the shape parameter e and the size of the support domain, solutions are also obtained for various val-
ues of shape parameter over 5-node and 9-node supports and the corresponding results are compared with the analytical
solutions at t = 0.6 and t = 1. The obtained error norms are presented in Tables 3 and 4, respectively. The steady state solution
has been reached near 0.7 for both 5-node and 9-node supports with 10�06 error tolerance. For e between 0.01 and 10, a
converged solution has been obtained for 5-node support, however, with 9-node support converged solution could be ob-
tained for e only between 0.3 and 5. The divergence of the solution may be due to the stability restriction of the explicit Euler
method. Also it can be observed from these comparisons that the solution accuracy has been improved with 9-node stencil
nearly by an order, though this is not seen for smaller e due to the ill-conditioness of the corresponding local matrix. Further,
the solution seems to be more accurate near e = 1.

4.2. Plane Poiseuille flow

Plane Poiseuille flow is another classical and simple problem in viscous, laminar flow involving the steady-state velocity
and pressure distributions for a fluid moving laterally between two plates whose length and width are much greater than the
distance separating them. The flow is driven by a pressure gradient in the direction of the flow, and is retarded by viscous
drag along the two plates, such that these forces are in balance.
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Fig. 4. Schematic of Poiseuille flow.
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The flow can be described by considering a viscous flow between two stationary parallel plates separated by a unit ver-
tical distance, as given in Fig. 4. For this specific problem, the velocity component and the pressure gradient in the vertical y-
direction vanishes identically so that the x-component of the velocity depends only on y. Analytical solution of the plane
Poiseuille flow is given by,
Table 5
Error (e

n

t;Dt?

0.011
0.041
0.101
1.0
uðy; tÞ ¼ Re
2

yðy� 1Þ þ 4Re
p3

X1
k¼0

1

ð2kþ 1Þ3
sinpyð2kþ 1Þe�

ð2kþ1Þ2p2

Re t : ð30Þ
In this problem, initial and boundary conditions for velocity and the pressure boundary conditions have been taken in a sim-
ilar way as that of Couette flow and the solutions have been obtained. The time step Dt has been varied from 0.001 to
0.00001 depending on the nodal density. Velocity profiles at various time levels have been compared with the corresponding
analytical solution and presented in Fig. 5. Table 5 reports the errors (err1). A third to fifth decimal accuracy in the results
again confirms the applicability of the developed scheme.

As in the case of Couette flow, dependence of e has been tested again for Poiseuille flow using both 5-node and 9-node
support domains (refer Tables 6 and 7). Steady state solutions have been reached for both the cases in the vicinity of t = 0.63.
When compared with the results of Couette flow, a similar convergence behaviour is observed, though plane Poiseuille flow
problem seems to be insensitive to e and the size of the support.
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Fig. 5. Comparison of the velocity profiles at various time levels for Poiseuille flow.

rr1) for at different time level for Poiseuille flow

11 � 6 21 � 11 41 � 21 81 � 41

0.001 0.0001 0.00005 0.00001

8.27(�03) 2.47(�03) 6.35(�04) 1.53(�04)
8.32(�03) 2.55(�03) 5.88(�04) 1.47(�04)
8.46(�03) 2.57(�03) 5.69(�04) 1.14(�04)
8.71(�03) 2.59(�03) 4.55(�04) 9.98(�05)



Table 6
Error err1 at t = 0.6 for various values of e on 41 � 21 nodes using 5-node and 9-node supports

e 5-node support 9-node support

0.005 Diverged Diverged
0.01 3.1927(�04) Diverged
0.05 3.1772(�04) Diverged
0.1 3.1772(�04) Diverged
0.2 3.1773(�04) Diverged
0.3 3.1775(�04) 3.1509(�04)
0.5 3.1783(�04) 3.1536(�04)
1 3.1817(�04) 3.1549(�04)
2 3.1951(�04) 3.1599(�04)
5 3.2832(�04) 3.1857(�04)
10 3.5500(�04) Diverged
15 Diverged Diverged

Table 7
Error err1 at t = 1 for various values of e on 41 � 21 nodes using 5-node and 9-node supports

e 5-node support 9-node support

0.005 Diverged Diverged
0.01 3.1928(�04) Diverged
0.05 3.1771(�04) Diverged
0.1 3.1771(�04) Diverged
0.2 3.1773(�04) Diverged
0.3 3.1775(�04) 3.1509(�04)
0.5 3.1783(�04) 3.1536(�04)
1 3.1817(�04) 3.1549(�04)
2 3.1953(�04) 3.1600(�04)
5 3.2845(�04) 3.1862(�04)

10 3.5540(�04) Diverged
15 Diverged Diverged
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From the results of these two problems, it can be seen that the dependance of the shape parameter and the support do-
main does not seem to have much impact on the accuracy. Hence, the value of e has been fixed as one with the standard 5-
node stencil as the support domain for the remaining problems.

4.3. Flow in a lid driven cavity

Lid driven cavity problem is one of the well-known bench mark problem, which is often used to test the numerical
schemes. Despite its simple geometry, the driven cavity flow retains a rich physics of fluid flow manifested by multiple recir-
culating regions on the corners of the cavity depending on the value of Reynolds number.
u= 0, v= 0

u =1, v= 0

u 
=

 0
, v

 =
 0

u 
=

 0
, v

 =
 0

Fig. 6. Schematic of lid driven cavity flow.
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Schematic of the problem is given in Fig. 6, in which the cavity is defined in a square region [0,1] � [0,1]. The flow is in-
duced by the sliding motion of the top wall from left to right. No slip boundary conditions are considered on all the walls; i.e,
on the top wall u = 1, v = 0, and on all other walls u = 0 and v = 0, as shown in Fig. 6.

Since the boundary values of velocity components are available, the boundary condition for pressure is again taken from
the condition (21), which is essentially oP

on ¼ 0. The problem has been extensively studied for various Reynolds’ numbers on
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both uniform and non-uniform nodal distributions. The results for Re = 100, 1000 and 3200 are given in Figs. 7–9 and Tables
8–10, respectively.

The results have been presented by comparing velocity components (u, v) as well as stream function and vorticity (w, x)
values with the benchmark solutions from [22]. The computation of w and x values has been performed as a post-compu-
tation using the velocity field by considering the following relationships between (w, x) and (u, v),
Fig. 8.
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Table 8
Comparison of centre of primary vortex and the corresponding stream function and vorticity values with [22]

Re RBF scheme Ghia et al.

100 (x, y) 0.6357, 0.7500 0.6172, 0.7344
w �0.1013 �0.1034
x 3.1047 3.1646

1000 (x, y) 0.5305, 0.5601 0.5313, 0.5625
w �0.1164 �0.1179
x 2.0389 2.0497

3200 (x, y) 0.5154, 0.5305 0.5165, 0.5469
w �0.1155 �0.1204
x 1.9991 1.9886

Table 9
Comparison of centre of secondary vortices and the corresponding stream function and vorticity values with [22]

Re Right Left

RBF scheme Ghia et al. RBF scheme Ghia et al.

100 (x, y) 0.9333, 0.0667 0.9453, 0.0625 0.0500, 0.0500 0.0313, 0.0391
w 4.38(�05) 1.52(�05) 2.05(�05) 1.75(�06)
x �5.49(�02) �3.31(�02) �3.97(�02) �1.56(�02)

1000 (x, y) 0.8651, 0.1118 0.8594, 0.1094 0.0909, 0.0781 0.0859, 0.0781
w 1.96(�03) 1.75(�03) 3.68(�04) 2.31(�04)
x �1.0862 �1.1546 �0.3899 �0.3617

3200 (x, y) 0.8310, 0.0844 0.8125, 0.0859 0.0844, 0.1118 0.0859, 0.1094
w 3.00(�03) 3.14(�03) 1.13(�03) 9.78(�04)
x �2.0786 �2.2736 �1.0112 �1.0630

Table 10
Comparison of centre of top left secondary vortex and the corresponding stream function and vorticity values with [22]

Re RBF scheme Ghia et al.

3200 (x, y) 0.0555, 0.8954 0.0547, 0.8984
w 6.87(�04) 7.28(�04)
x �1.6375 �1.7116
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Substituting (31) in (32) gives,
o2w
ox2 þ

o2w
oy2 ¼ �x: ð33Þ
After computing x using (32), Eq. (33) is solved iteratively with appropriate boundary conditions for w. Eq. (31) and the
boundary conditions of u and v on the walls implies that w must be a constant on all these walls. In all the computations
this constant has been taken as zero. The same procedure given through (31)–(33) has been used for w �x computation
for all the test problems.

In Figs. 7–9, the subfigures (a) and (b) depict the stream lines and iso-vorticity contours, respectively. A non-uniform dis-
tribution of nodal points, as given in subfigure (c) of all the figures, has been used in these computations. The number of
nodes (non-uniform) in the domain have been fixed as n = 41 � 41 for Re = 100 and n = 129 � 129 for Re = 1000 and 3200.
All these figures demonstrate the typical separation and formation of secondary vortices at the bottom corners of the cavity
as well as at the top left, for 3200, of the square cavity. The location of the centre of primary and secondary vortices and the
corresponding stream function and vorticity values at these centres have been compared, with the available benchmark data
given by Ghia et al. [22], in Tables 8–10 for Re = 100, 1000 and 3200, respectively. Both results agree up to 2nd significant
digit.

A second quantitative assessment is made by comparing the velocity components through the geometric centre (g.c.) of
the cavity. The results have been compared with [22] for various nodal distributions. For high Reynolds’s numbers, the accu-
racy in the results has been improved by using more denser nodal distributions in the corners. For example, it can be seen
from (d) and (e) of Fig. 9 that the non-uniform 129 � 129 distribution of nodes gave more accurate results compared to the
corresponding 129 � 129 uniform distribution. A distribution of nodes as given in Fig. 9(c2) (113,953 nodes) has also been
considered, in which a very fine (1/384) distribution near boundary and a coarse (1/96) distribution elsewhere has been ta-
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ken. However, the non-uniform 129 � 129 based results are found to be more accurate. The better accuracy using 129 � 129
distribution is may be due to the continuous variation of the nodes, which is not the case for the distribution given in Fig.
9(c2). For both uniform and non-uniform distributions computations have been performed using a 5-node support (chosen
in a similar fashion as in the previous test problems) with e = 1.

In these studies, time step Dt has been taken as 0.0005 and 0.00005, respectively for 41 � 41 uniform and non-uniform
cases. Time step Dt is taken as 0.0005 for 129 � 129 uniform distribution, while Dt = 0.00001 for 81 � 81 and 129 � 129 non-
uniform distributions. For the case as given in Fig. 9(c2), Dt is taken as 0.0001. For Re = 100, 1000 and 3200, the steady state
solutions have been reached approximately around t = 20, 40 and 65.

4.4. Flow over a backward-facing step

Two dimensional laminar incompressible flow over a backward-facing step (BFS) has been one of the standard benchmark
problems to test the ability of newly developed numerical methods in predicting the flow separation and reattachments
accurately. Typical flows around buildings or large structures where flow separation occurs when the flow passes over sharp
corners of the building and its reattachment far downstream can be considered as one of the practical examples of such
flows. The presence of separated flow, together with flow reattachment, can cause increased unsteadiness, pressure load,
structural vibrations and noise. Understanding the flow around buildings or large structures is of vital importance to make
a better design.

Many numerical studies on the two dimensional incompressible flow over a backward-facing step can be found in the
literature. Kaiktsis et al. [23], in their computations, using spectral element method, claimed that the flow at Re = 800 is un-
steady and exhibits chaotic nature. Runchal [24] and Choudhury [25] also have come up with a similar conclusion with the
computations using some unsteady finite volume methods. However, these results went against the benchmark solutions
provided by Gartling [26] in which the author obtained the solutions through steady computations assuming the existence
of steady solution. To establish the reality, Gresho et al. [27] have made a joint effort by considering variety of numerical
methods, like finite element, finite difference and spectral element, and obtained steady and stable solutions at Re = 800
through unsteady computations.

Some of the other investigations include, [19,28–31], in which the authors have studied the BFS flow for Reynolds’ num-
bers varying up to 800. Cruchaga [32] solved the steady BFS flow using finite element method and obtained steady numerical
solutions up to Re = 5500, although Re = 800 has been their primary interest. Apart from these studies, Rams�ak and S�kerget
[33] has obtained solutions for steady flow over a BFS for Re = 1000.

This shows the wide attention received for the BFS problem at Re = 800 by numerous investigators in the literature. The
controversy in obtaining the steady flow through unsteady computations at Re = 800 makes the problem challenging and
hence, in the present study, the Reynolds’ number Re has been fixed as 800.

As shown in Fig. 10, the downstream channel is defined to have a unit height H, with a step height and inlet region heights
set equally to H/2 with the solution domain corresponds to the geometry of the benchmark case given in Gartling [26]. No
slip boundary conditions have been set at all the solid surfaces, while a parallel flow with a parabolic horizontal component,
given by u(y) = 24y(0.5 � y), has been specified at the inlet 0 6 y 6 0.5.

Detailed studies were made on the effect of different outflow boundary conditions (OBCs) for incompressible flows at two
Minisymposiums on Outflow Boundary Conditions. In the report by Sani and Gresho [31], they have investigated various OBCs
which include pseudo stress-free condition,
�P þ 1
Re

ou
ox
¼ 0;

ov
ox
¼ 0 ð34Þ
and true stress-free condition,
�P þ 2
Re

ou
ox
¼ 0;

ou
oy
þ ov

ox
¼ 0: ð35Þ
u = 0, v = 0

u = 0, v = 0

)

)

H

u(y) = 24y (0.5 - y) 
   v = 0 

H / 2

x

y

u 
=

 0
v 

=
 0

 

Fig. 10. Schematic of the flow over a backward-facing step.
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Sani and Gresho [31], in their paper remarked that although the physical interpretation of the condition in (34) is not clear, it
is preferred over the stress-free condition in (35), since all the stresses do not necessarily vanish at an outflow boundary.
Therefore, in the present computations, conditions given in (34) have been used.

The differential equations in (34) have been incorporated in the RBF based fractional step approach in the following man-
ner: (i) The natural pressure boundary conditions in (26) are replaced with �P þ 1

Re
ou
ox ¼ 0; (ii) momentum equations are

forced to satisfy ov
ox ¼ 0 at the outlet.

Uniform nodal distribution has been considered with two different nodal spacings 0.025 and 0.0125 with time step as
0.0001. Like in the earlier cases standard 5-point stencil has been chosen as support domain. The initial conditions for the
flow have been taken by simply extending the boundary conditions at x = 0 throughout the channel, so that the initial con-
dition satisfy the incompressibility constraint. Since pressure values at the outflow boundary can be computed using (34),
Neumann boundary condition (26) has been taken only on the rest of the boundaries. As mentioned before, the value of
the shape parameter e has been fixed as one in all these computations.

Streamline plots have been given in Figs. 11 and 12 to illustrate the recirculating regions occur in the backward-facing
step. The streamline patterns obtained by Gresho et al. [27] are also included in these figures for the sake of qualitative com-
parison. It can be observed that at around time t = 30 the small eddies which were present earlier have been disappeared and
only two large eddies on upper and lower walls appear to be present. However, the steady state has been reached only
around t = 400 and both the eddies have been stretched and shifted towards the downstream from their locations at
t = 30. The streamlines and iso-vorticity contours of the steady state solution have been compared with Gresho et al. [27]
in Fig. 13.

To verify the long term behaviour of the solutions, time history plots for the x-component of the velocity at different
cross-sections of the channel have been given in Fig. 14 for various vertical positions. Oscillatory behaviour shown in the
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values have been fixed with respect to inlet boundary values such a way that the boundary condition for w does not suffer
from any discontinuity. At outlet, the condition ov

ox ¼ 0 has been used in Eqs. (31)–(33) for w and x.

4.5. Flow through vascular stenosis

The effect of axisymmetric constrictions in tubes has many important applications especially in biofluids. The partial
occlusion of arteries due to stenotic obstruction is one of the most frequent anomalies in blood circulation. The results of
a steady flow analysis for this situation is an important first step in studying the effects of arterial stenosis on the human
body. It is well known that, once such obstruction is formed, the blood flow is significantly altered and fluid dynamic factors
play an important role as the stenosis continues to develop. Studies of the stenotic flow fields have been done by numerous
investigators. The fluid mechanical and biochemical effects associated with stenoses have been reported in many studies.
One of the first numerical studies for flow through a constricted tube was done by Lee and Fung [34] with the use of a gauss-
ian function to model the constriction. Later Young and Tsai [35] conducted a series of steady flow experiments with differ-
ent levels of area constrictions and highlighted various hydrodynamic factors such as pressure drop, separation and
turbulence. Deshpande et al. [36] have theoretically modelled vascular constrictions of a sinusoidal function and verified
them with experimental results. Further, fluid flow through tubes with multiple constrictions has also been studied by
Lee [37,38].

4.5.1. Geometry of the stenoses and governing equations
In the present study, models with single constriction (occlusion) have been considered. The tube has been assumed cir-

cular in cross-section with unit radius everywhere except at the location of the stenotic constriction. The governing equa-
tions of the three dimensional problem have been chosen in cylindrical polar co-ordinates to exploit the axisymmetric
nature of the flow.

The cylindrical coordinate system (z, r, h) having the z-axis coincident with the axis of the tube is assumed. The schematic
of the flow is as given in Fig. 16. To describe the axisymmetric constriction centered at z = 0, both gaussian and cosine (the
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function used by Deshpande et al. [36]) functions have been considered. The results given in the following sections are based
on the cosine function which can be defined as
r0ðzÞ ¼ 1� a
2

1þ cos
pz
x0

� �� �
; �z0 6 z 6 z0; ð36Þ
where z0 defines the length and a defines the depth of the stenoses (Fig. 16a).
Since an axisymmetric solution is sought, all dependent variables are assumed to be independent of h and also made the

corresponding velocity component zero. Therefore, the governing equations for axisymmetric flow, in cylindrical polar co-
ordinates, are given by
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Continuity equation :

ou
oz
þ ov

or
þ v

r
¼ 0: ð37Þ

Momentum equations :

ou
ot
þ u

ou
oz
þ v

ou
or
¼ � oP

oz
þ 1

Re
o2u
oz2 þ

ou2

or2 þ
1
r

ou
or

" #
; ð38Þ

ov
ot
þ u

ov
oz
þ v

ov
or
¼ � oP

or
þ 1

Re
o2v
oz2 þ

ov2

or2 þ
1
r

ov
or
� v

r2

" #
; ð39Þ
where (u, v) are the velocity components corresponds to physical co-ordinates (z, r), P is the pressure and Re ¼ UmaxR
m , where

Umax is maximum velocity and R is the radius of the pipe at the unoccluded region for the dimensional problem and m is the
kinematic viscosity. Eqs. (37)–(39) have been solved using the Algorithm 3.1 with the necessary minor changes.

The boundary conditions associated with the physical problem are defined as follows. At the wall r = r0(z), the usual no-
slip boundary conditions have been taken. At the line of symmetry r = 0, a symmetry condition on u has been applied while v
has been chosen as zero. These conditions can be defined as,
ou
or
¼ 0; v ¼ 0; at r ¼ 0: ð40Þ
Hagen-Poiseuille flow through a long circular tube of constant cross-section has been assumed at the inlet,
u ¼ ð1� r2Þ; v ¼ 0; at z ¼ �1: ð41Þ
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Fig. 17. Nodal distribution for stenoses problem.
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Fig. 18. Comparison of streamlines and vorticity contours for 56% area occlusion at Re = 100: (a) present; (b) [36].
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Outflow boundary conditions, as mentioned in the case of flow over a backward-facing step, is a major concern even in ste-
noses problem. OBCs have to be formulated mathematically and in the present application, we have obtained the conditions
by matching the governing equations at the outflow boundary.

Stenoses are commonly characterized as a percentage reduction in diameter or area of the tube. Due to the sudden reduc-
tion of the diameter at the constriction region of the tube the numerical schemes loose stability and tend to diverge. There-
fore in the present study, two models have been considered with a = 0.333 and z0 = 4 and a = 0.5 and z0 = 1, that is with 56
and 75 percentages of area reductions, respectively. The computations are carried out for various Reynolds’ numbers and
steady state solutions have been obtained. The results have been compared with the results of Deshpande et al. [36], wher-
ever they are available.

The distribution of the nodes considered for the computations has the structure as given in Fig. 17 (not all the nodes have
been shown in the figure). A tensor-product type distribution is considered, which naturally made the distribution of the
nodes in the stenoses region non-uniform. Due to this non-uniformity of nodal distribution, the 5-node support chosen in
this region differ from the standard 5-node support and it is portrayed in Fig. 17. The domain chosen for the computations
is [�5,25] � [0,r0(z)] with 301 nodes in z and 11 in r directions, respectively. Time step has been taken as 0.001 in all the
computations. w �x computations have been carried out by following the same procedure described for the previous test
problems. Inlet boundary condition is obtained by integrating the u-velocity and then the same condition has been extended
to outflow for w. Based on these values, rest of the boundary conditions have been fixed. The observations and comparisons
are discussed in the following section.

4.5.2. 56% area occlusion
This is rather a mild constriction for which streamlines and vorticity contours have been compared in Fig. 18 with the

available benchmark results at Re = 100. It can be seen that Re = 100 is rather very small to yield separated flow. Figs. 19
and 20 give the streamlines and vorticity contours at Re = 400 and 1600, respectively. These Reynolds’ numbers are larger
than the critical value such that the laminar separation takes place. As expected, the reattachment point tends asymptoti-
cally towards the far downstream as the Reynolds’ number increased.

Simulations have been performed for Reynolds’ numbers up to 1600 and the effect of stenosis has been examined using
various parameters like velocities, pressure and vorticity, mainly on the symmetry line r = 0 and on the wall r = r0(z). Fig. 21a
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Fig. 19. Streamlines and vorticity contours for 56% area occlusion at Re = 400.
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Fig. 20. Streamlines and vorticity contours for 56% area occlusion at Re = 1600.
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illustrates the variation of pressure along the axis and on the wall. In the case of low Re, as the occlusion is approached, a
rapid fall in the pressure can be observed. Vorticity at the wall for various Reynolds’ numbers has been plotted in Fig.
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21b, where a large increase in the value is evident in the constriction with a maximum vorticity occur just before the centre
of the occlusion. Also, for separated flows, change of sign in the vorticity can be observed near the end of the throat.

The variation of centre line velocity is illustrated in Fig. 21c. From this figure, it can be seen that the location of the max-
imum velocity for each Re is near the throat (on the downstream side) and these values slightly shift towards the down-
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stream as Re increases. Also the decrease in the centre line velocity towards downstream is linear in z. The velocity fall after
the occlusion is slow for large Reynolds’ numbers, may be due to the low pressure variation (see Fig. 21a) in this region com-
pared to small values of Re.

Fig. 22 gives profiles of both axial and radial velocities at various cross-sections at different values of Re. It can be seen
that both the velocity components undergo change in sign within the recirculation region at the cross-sections chosen from
the constricted region. At Re = 200, this does not happen since there is no separated flow.

4.5.3. 75% area occlusion
For 75% of area reduction, a relatively severe stenoses, separated flow occurs for relatively small Reynolds’ numbers com-

pared to the previous case. A very small separated region can be visualized in the streamline pattern given in Fig. 23 for
Re = 10. Further, for Re = 200, the streamlines and iso-vorticity contours have been compared with that of Deshpande et
al. [36] and given in Fig. 24. It can be seen that the reattachment point in this case is far below downstream compared to
that of Re = 10.

From Fig. 25, it is clear that the trends are similar to that of 56% area occlusion, however, the peak values of vorticity and
centerline velocity are far higher in 75% case. This is due to the larger expansion region in 75% case on account of high degree
of area reduction.
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Fig. 23. Streamlines and vorticity contours for 75% area occlusion at Re = 10.
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Fig. 24. Comparison of streamlines and vorticity contours for 75% area occlusion at Re = 200: (a) present; (b) [36].
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In Fig. 26 axial and radial velocity components at Re = 200 have been compared with the results given by Deshpande et al.
[36] and can be seen that the values agree reasonably well.

5. Conclusions

In the present investigation, a ‘local’ RBF gridfree scheme to solve unsteady, viscous, incompressible Navier–Stokes equa-
tions in primitive variables has been developed. A novel fractional step algorithm has been proposed to achieve velocity–
pressure decoupling. The developed scheme has been validated over various problems. Simple problems like Couette flow
or Poiseuille flow gave very accurate solutions even with coarser distribution of the nodes. The shape parameter in the mul-
tiquadric and different support domains have been experimented on these problems and the results have been used to fix
the shape parameter and the support domain for the rest of the problems. Complex features in lid driven cavity flow have
been accurately predicted with the present scheme, especially using appropriate non-uniform nodal distribution, even for
large Reynolds’ numbers.

Further, the study of the developed scheme has been extended to problems with separated flows, i.e, flow over a BFS and
flow through vascular stenoses, and the results obtained have been in excellent agreement with the available benchmark
solutions. For BFS flow, steady state solutions have been obtained for Re = 800 even with coarser distribution of the nodes,
unlike the claim made by Kaiktsis et al. [23]. For stenotic flows, both mild (56%) and severe (75%) area reductions have been
analysed by considering streamline patterns, vorticity, pressure and velocity. Some of the results have been compared with
that of the available results given by Deshpande et al. [36] and found them satisfactory.
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